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A theory is proposed to describe the generation of sound by turbulence at high 
Mach numbers. The problem is formulated most conveniently in terms of the 
fluctuating pressure, and a convected wave equation (2.8) is derived to describe 
the generation and propagation of the pressure fluctuations. 

The supersonic turbulent shear zone is examined in detail. It is found that, at  
supersonic speeds, sound is radiated as eddy Mach waves, and as the Mach 
number increases, this mechanism of generation becomes increasingly dominant. 
Attention is concentrated on the properties of the pressure fluctuations just 
outside the shear zone where the interactions among the weak shock waves 
have had little effect. An asymptotic solution for large M is derived by a Green's 
function technique, and it is found that radiation with given frequency n and 
wave-number k can be associated with a corresponding critical layer within the 
shear zone. 

It is found that ( p  - p J 2  increases approximately as Mh for M 9 1 contr'asting 
with the M s  variation found by Lighthill for M < 1. The acoustic efficiency thus 
varies as M-h for M 9 1, and as M 5  for M < 1, indicating a maximum acoustic 
eEciency for Mach numbers near one. The directional distribution of the radia- 
tion is discussed and the direction of maximum intensity is shown to move- 
towards the perpendicular to the shear zone as M increases. The predictions of 
the theory are supported qualitatively by the few available experimental obser- 
vations. 

1. Introduction 
The problem of acoustic radiation from turbulence has excited interest in 

recent years because of its relevance to questions of structural fatigue and human 
discomfort in high-speed aerodynamics. The problem was formulated by Lighthill 
(1952,1954), and most subsequent work has been concerned with the application 
and extension of his technique to various flows at Mach numbers much less than 
one. A central point in Lighthill's formulation is the emergence of an exact 
analogy with classical acoustics. From the momentum and continuity equations 
of the fluid, he showed that the fluctuations in density p are described by the 
equation 

where a, is the speed of sound in the undisturbed medium and 

= (1.2) 
1 Fluid Mech. 9 
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In  this expression ui represents the Cartesian velocity components, pij the stress 
tensor and Sij the Kronecker delta tensor. 

If the right-hand side of (1.1) were zero, it  would be the simple wave equation 
for the propagation of density fluctuations in a uniform acoustic medium. The 
full equation is identical with the equation governing sound propagation in an 
acoustic medium containing a distribution of quadrupole sources whose strength 
per unit volume is zi. It follows that there is an exact analogy between the 
density fluctuations in a real fluid in arbitrary motion and those in a uniform 
acoustic medium at rest; all the real fluid effects such as sound generation, 
convection, attenuation and the like are represented by a suitably chosen dis- 
tribution of acoustic quadrupoles. This acoustical analogy has been powerful 
in the development of the subject, since it implies that we can use the termin- 
ology and concepts of classical acoustics, and the problem really reduces to 
finding from considerations of the flow dynamics the appropriate distribution 

If the Mach number of the flow is small, and this is the case with which most 
contributions have been concerned, Tii can be approximated by pouiuj; and a 
retarded potential solution of (1.1) can be written down. This ultimately leads 
to Lighthill’s Us law for the intensity of the radiated sound when the Mach 
number M < 1. The restriction to low Mach numbers, though not inherent in 
the original analogy, becomes very important in the course of this analysis. 
It is involved first in the neglect of a2(p,  -uipSii)/azi;iaxj in (1.1) which corre- 
sponds physically to the neglect of the sound attenuation and of the variation 
in the speed of sound at different points in the flow. It is invoked again to replace 
the density factor in puiui by po, the density of the undisturbed fluid. This is a 
good approximation if (p -p,)/p, is small, but at  high Mach numbers this may 
not be so. Without this approximation, the retarded potential ‘solution’ of 
(1.1) is an integral equation for p of a rather intractible kind. This alone would 
provide a considerable obstacle to extending the Lighthill formulation to high 
Mach numbers, but it would not be the only one. If M 9 1, the lifetime of an eddy 
is comparable with, or shorter than, the time taken by a sound pulse to move 
across the eddy, and the retarded time effect could not a t  any stage be neglected. 
Despite this cascade of difficulties, attempts have been made by Ribner (in an 
unpublished note) and Lilley (1958) to extend the Lighthill approach to mean 
velocity Mach numbers of about 1.5 or 2,  but this seems to be the limit. It has 
frequently been speculated that, for very large M ,  the acoustic efficiency might 
become constant, so that the sound intensity would be proportional to U3. 
The author has been unable to find convincing reasons for this belief; it seems 
that the only reasonable statement of this kind that one can make is that the 
acoustic eEciency must be bounded above, so that the exponent of U must be 
less than or equal to 3. 

It appears that if we are to be concerned with high Mach numbers, a new 
approach will be necessary, involving a reformulation of the problem from the 
beginning. An attempt towards this is made in the present paper. This will 
involve a reluctant abandonment of the acoustical analogy, and a discussion of 
the phenomenon as a flow problem at large Mach numbers. 

T,(x, t ) .  
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It might be worth while at this point to set forth the detailed aims of this 
investigation. The first, of course, is to uncover the mechanism whereby sound is 
generated in a supersonic turbulent flow; it is found to be different from the one 
that dominates when M << 1. Secondly, we wish to find how the intensity of the 
sound field, its directional distribution and the radiated energy flux vary with 
the appropriate flow parameters, particularly the Mach number M .  Associated 
with this is the question of radiation damping-does the loss of energy from the 
turbulence by radiation ever become such a large fraction of the energy supply 
that the turbulence itself tends to be damped out at very large Mach numbers? 
With these objectives in mind we propose to investigate the sound radiation 
from a turbulent shear zone, this particular flow being chosen for reasons of 
relative simplicity and convenience, and in the hope that the results might be 
experimentally verifiable in, say, the shear zones of a jet. 

My first attempt to formulate the problem was in terms of density fluctuations, 
as in Lighthill's approach. This led to what can best be described as a convected 
wave equatim rather similar to (2.8) below, in which the dependent variable was 
log(p/p,). This overcame one of the difficulties in the Lighthill formulation in 
that the density did not occur explicitly on the right-hand side as it does in (1.1). 
However, the right-hand side consisted of two large terms whose relative im- 
portance was difficult to estimate-one involving vorticity fluctuations and one 
entropy ffuctuations. This might indeed have been inferred a priori from the 
work of Chu & Kovasznay (1958) concerning the interactions among the various 
modes of motion at supersonic speeds. However, if the problem is expressed in 
terms of pressure fluctuations, this difficulty disappears and the right-hand side 
of our governing wave equation, (2.8) below, contains only a single dominant 
term, since pressure-entropy interactions are small. 

2. The convected wave equation 
In  the present discussion, it will be assumed that the effects of gas dissociation 

and relaxation phenomena can be neglected. These approximations will probably 
be adequate in aeronautical problems (except in strong shock waves) if the 
stagnation temperature does not exceed about 2000" K. The equation of state 
for a perfect gas is 

where 9%' is the gas constant and p ,  p, T represent the pressure, density and 
temperature of the gas. In  a fixed Cartesian reference frame, the equation of 

P = gPT, (2.1) 

continuity is 1Dp au. _ _  +--2 = 0, 
Dt axi (2.2) 

and since the density can be considered a function of pressure and entropy S ,  
this equation can be expressed alternatively as 

( 2 . 3 )  

From the second law of thermodynamics, 

1-2 
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(Howarth, 1953, p. 45), where c, is the specific heat at constant volume. Therefore 

= - p-l(cv f 8) 

from (2.1) and the equation c, - c, = W, where cp is the specific heat at constant 

YP 
pressure. Furthermore, 

where a is the local speed of sound and y the ratio of specific heats, so that (2 .3)  
can be expressed as 

&-  y p  Dt cp Dt * 
(2.5) aui 1 oP 1 DS +--- 

The momentum equation for the fluid is 

(2.6) 

where pii represents the stress tensor which, for a Stokesian fluid, is of the form 

p i j  = -p& +p(eij - jSSij), (2.7) 

where dii is the Kronecker delta, eij the rate of strain tensor and 8 = aui/axi the 
fluid dilatation. 

We now eliminate the linear velocity term between (2.5) and (2.6). Since 

it follows from (2.6) and (2.7) that 

Operating on equation (2.5) with D/Dt, and subtracting the result from the last 
expression, we have 

0 2  

Dtz (:,) Li{ ii (k)) -log - -- aZ-log 

(2.8) 

since 

where p ,  is a convenient reference pressure. 
Equation (2.8) provides the starting point of the present investigation. The 

terms on the left-hand side are those of a wave equation in a moving medium 
with a variable speed of sound, the partial time derivatives of the ordinary wave 
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equation being replaced by derivatives following the motion. The first term on the 
right-hand side represents the generation of pressure fluctuations by the velocity 
fluctuations in the fluid while the remaining terms describe the effects of entropy 
fluctuations and fluid viscosity. In  contrasting these equations with those of 
Lighthill, it  is evident that the effects of convection and variation in the local 
speed of sound are included here in the left-hand side of the equations, whereas 
in Lighthill's acoustic analogy, they were described in terms of a quadrupole 
distribution in an acoustic medium. In supersonic flow, neither of these effects 
can reasonably be ignored, whereas if M < 1, the variation of a2 is likely to be 
small, and the convection effects can if necessary be included by a subsequent 
translation of our frame of reference. In  both this and Lighthill's case, the direct 
effects of fluid viscosity and heat conductivity are likely to be unimportant as 
far as the sound generation is concerned, and under these circumstances the last 
two terms of (2.8) can be neglected, since 

where is the rate of energy dissipation per unit volume by viscosity and K the 
fluid conductivity. 

If we were to be concerned with the structure of the shock waves developed 
inside a turbulent fluid at high Mach numbers, then these terms certainly could 
not be neglected, since the internal structure of the shocks is determined by the 
balance between these diffusive and the convective effects. For a turbulent shear 
layer, however, there is the possibility that we might consider separately the 
processes of generation of the pressure waves and the subsequent development 
of the shocks. The pressure waves are generated inside the shear zone and they 
develop into weak or strong shock waves with increasing distance from the 
turbulent zone. The distance that the wave travels before the shock is fully 
developed is hpo/p' (Lighthill 1956,s 5.2), where h is the wavelength, po the mean 
pressure and p' the root-mean-square fluctuation in pressure associated with the 
wave. If this distance is comparable with, or larger than, the shear zone thick- 
ness, a separation of the two processes is possible, and the diffusive effects can be 
neglected as far as the generation is concerned. We would expect that a theory 
based on this separation would reliably predict the pressure field just outside 
the shear zone for all wavelengths if p'lpo is small and for the larger wavelengths 
of the sound field if p'/po is moderate. 

3. The Fourier transform equation 
is a function of 

the x3 position co-ordinate only. Suppose that the characteristic zone thickness 
is 2L and that 211 changes from - U to U as x3 moves from - co to co. We seek to 
derive properties of the radiated pressure waves in terms of the velocity fluctua- 
tions of the shear zone, our primary concern being with values of U greater than 
a,, the speed of sound a t  infinity. For the sake of analytical convenience we sup- 
pose further that all mean-point properties of the motion in the shear zone are 

Consider a turbulent shear zone in which the mean velocity 
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independent of x,, x2 and time t ,  being functions of x3 alone, the position co- 
ordinate normal to the zone. 

Neglecting the diffusive terms in (2.8), we obtain 

This equation? can be further simplified if we neglect on the left-hand side 
products of two fluctuating quantities with zero means, on the understanding 
that these will be small (in mean square) compared with the products of mean and 
fluctuating quantities. This neglects such physical processes as the convection 
and scattering of sound by the turbulence, and by variation of a2 about its local 
mean value. We retain, however, besides the generation term, the processes of 
convection and refraction of the sound by the mean flow and by variation with 
x3 of the local mean speed of sound. The latter may be important if there are 
significant variations in the mean temperature of the flow. Equation (3.1) then 
reduces to 

or (3.3) 

since 2 = aT(x3). In  many instances, the dominant term on the right-hand side 
is likely to result from the interactions of the large mean velocity gradient with 
the fluctuating velocity gradients, and the generation term can be approximated 

au au3 
2 y 2 7  ax, ax, (3.4) 

but for the present, the full expression will be retained. 

and mean velocities be given by 
It is of advantage to express (3.3) in dimensionless form. Let the instantaneous 

and also 

(3.5 b )  

where a, is a reference sound speed, say at y3 = +co in the undisturbed fluid. 
If the mean stagnation temperature is the same on both sides of the shear zone, 
then 

the limit as y3 -+ - co may be different otherwise. 

(3.6) A(y3)+ 1 as y3+ &a; 

t Since diffusive effects are neglected in this equation, p cc pY and (3.1) takes the alter- 
native form 

from which the familiar Lighthill form can be deduced immediately when M < 1. 
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The dimensionless form of (3.3) is thus 

which can be reduced to the normal form for y3 (in which there is no first differ- 
ential operator a/ay3) by taking a new dependent variable 

(3.8) 
PO 

This vields 

The generation term G is significant only inside the turbulent shear zone, so that 

G(y, 7) + 0 as y3 + f co. (3.10) 

Let us now define the generalized Fourier transforms (Lighthill 1958) 

where k = (kl, k2)  is a wave-number vector in the plane of the shear layer and 
the integrations are made over all values of k and frequency n. 

The equation relating the generalized Fourier transforms a and I' that 
corresponds to (3.9) is 

(3.12) 

where the suffix on y3 has been dropped, k2 = 12: + k;, A and V are functions of 
y only, and A" = d2A/dy2. 

4. Some simple deductions 
Before we embark on a detailed analysis of equation (3.1 2), it might be worth 

while to discuss briefly the nature of the solutions that we expect in the region 
IyI > 1 outside the shear zone. For y > 1, G(y) fi 0, A(y) fi 1, V(y) fi 1, so that 
(3.12) becomes 

d2w 
__ + {N2(n + kl)2 - k2} w = 0. 
dY2 

(4.1) 

Since w(y) must be bounded as y+oo, the solutions to (4.1) must be either 
exponentially decreasing or oscillatory according as the coefficient of a is nega- 
tive or positive. Clearly the oscillatory solution corresponds to a radiated pattern 
of Mach waves, which for a given Mach number are associated with wave- 
numbers k and frequencies n such that 

M2(n + k,)2 - k2 > 0. (4.2) 
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Let us consider the contribution to the radiated pressure field from the layer 
between y = Y and y = Y + SY in the shear zone. The turbulent eddies in this 
neighbourhood are convected by the mean stream with velocity V,, say, which 
is approximately equal to the local mean velocity at Y .  If the flow is supersonic, 
it is sufficient to neglect for the moment the evolution of the eddy pattern as it 
is carried along, so that the frequency of the components of wave-number k is 
just the frequency with which the wave component is swept past the fixed obser- 
vation point at a rigid convected pattern. t We therefore have 

n = --klJ;. (4-3) 
U 

I -  -U 

FIGURE 1. The turbulent shear zone. 

The layer of the shear zone near Y ,  where the convection velocity is I:, will 
therefore generate Mach waves on the side of the layer y > 1 with wave-numbers 
k such that 

If 8 is the angle between the vector wave-number k and the direction of the mean 
velocity, then cos 0 = k,/k and this condition becomes 

M2k:( 1 - V,)' > k2.  

cos2 8 > [M(  1 - V, ) ] -2 .  (4.4) 

Radiated Mach waves will therefore be generated by some wave-numbers 
in those layers of the shear zone for which the difference between the mean 
velocity of the fluid outside the shear zone and the local eddy convection velocity 
is greater than the speed of sound outside the zone. Generation of Mach waves 

t Notice that if the eddy convection velocity is subsonic, this approximation is much 
too coarse. As Lighthill (1952, 1954) has shown, sound is radiated in subsonic flow only 
becazcse the convected eddy pattern does change as it is carried along. 
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in this way is somewhat analogous to their formation by thin bodies moving 
supersonically; they can be described conveniently as ‘eddy Mach waves ’. 
This is illustrated in figure 1, where the area below the dashed line, including the 
whole of the turbulent region in y < 0, represents the part of the shear zone which 
make some contribution to the eddy Mach waves in the fluid above the zone. 
Clearly, there is a corresponding region towards the upper side of the shear zone 
that is responsible for Mach wave generation in the fluid below the zone. The 
possibility that this effect might be important was suggested by Kramer (1955) 
among others, but hitherto no detailed analysis has been carried out. 

FIGURE 2. Wave-numbers radiating Mach waves from a 
given critical layer in the shear zone. 

For a given layer where the convection velocity is I:, the allowable wave- 
numbers for Mach wave generation are given by (4.4) and are indicated in figure 3 
by the region inside the lines 

emax = cos-1 {a( 1 - y)}-l. 
However, the maximum eddy size in the shear layer is of order 6L, or a little 
more, so that the smallest (dimensionless) wave-numbers present in the tur- 
bulence are of order 1 or a little less. We would therefore expect to  find the wave- 
numbers of the radiated pressure field predominantly in the region O < Om,,, 
E > 1. As the Mach number increases, the critical angle Om,, increases also, 
until at  very high Mach numbers, almost all components of the turbulence are 
capable of radiating Mach waves. 

The Fourier components whose wave-numbers lie at angles greater than Om,, 
(whose convection velocities resolved in the direction of k are subsonic) are still 
of course capable of radiating some sound since their amplitides and phases 
change slowly as they are convected. Their contribution could be estimated in 
a manner analogous to that used by Lighthill (1953). However, if the Mach 
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number of the flow is substantially greater than one, their contribution is pro- 
bably unimportant, and decreases with increasing M ,  since for most of the shear 
layer only a small part of the wave-number plane is excluded by the condi- 
tion (4.4). 

These geometrical considerations do not allow any quantitative predictions 
concerning the over-all intensity of the radiated field or its distribution among 
the wave-numbers indicated in figure 2. Such questions can be answered only 
by a more detailed analysis of (3.13). 

5. The radiated pressure field 
Equation (3.12) can be expressed as 

where 

If In\ < Ikll,t  then q(y) passes through zero at some value of y, say Y such that 

n + k , V ( Y )  = 0. (5.3) 

This equation defines the critical layer for a given n and k more formally than 
was possible by the intuitive arguments of the previous section, and it will be 
found that the radiation of frequency n and wave-number k does indeed originate 
from the region of the shear zone near Y .  When M is large, the coefficient of the 
term containing w(y) has a small negative region (the subsonic region) near 
y = Y where q( Y )  = 0. The two zeros are closely spaced, their separation being 
of order M-l, and the coefficient becomes constant in y as I y - YI -+ co. This 
behaviour suggests that we transform (5.1) to the form 

where b is a large parameter (of order M )  and b2z2 has a double zero at z = 0 
corresponding to the closely spaces zeros in M2q2(y) - k2 - (A"/A) as M -+ co. 

Unless the mean speed of sound changes abruptly within the shear zone 
(which is unlikely, because of the mixing effect of the turbulence) the term A"/A 
in this coefficient is small compared with k2 for the wave-numbers greater than 
unity with which we are concerned. The principal influence of the variation in 
the speed of sound in the shear zone has been accounted for by the change of 
variable (3.8), and even in an extreme case where A changes by a factor of two 
across the shear zone, the influence of the term A"/A will be felt only by the pres- 
sure fluctuations of the largest scale, for which k is of order unity. In  general, 
then, it is sufficient to approximate the coefficient of the second term on the 
left-hand side of (5.1) by 

M 2 q 2 ( y ) - k 2 .  

It is clear that there will exist such frequencies in the sound field, since them corre- 
spond to the frequencies in the turbulence. 
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The details of finding the asymptotic solution as M --f co to (5.1) are given in 
the Appendix, but a brief indication of the procedure followed might be in order. 
Equation (5.1) is transformed so that its left-hand side resembles that of (5.4). 
One's first inclination would be to seek an asymptotic solution for - co < y < co 
in powers of M-l, but it transpires that the first term in this series diverges. If, 
instead, the domain is divided into the regions -co < y 6 Y and Y < y < co, 
a convergent asymptotic solution can be found if the large parameter corre- 
sponding to b above is taken as 

I k2 3 1 QY) 

1 Qir 
A =  M 2 - -  for -a< y <  Y, 

p =  MZ-K for y < y < c o ,  

Q+ = lim q(y) = n+kl,  

Q- = lim q(y) = ~ 

where 
u - t m  

n-k, 
g-+- m A( -a)' 

(5 .5 )  

The asymptotic solutions are found in these two domains by a Green's function 
technique, and the arbitrary constants are determined by applying radiation 
conditions outside the shear zone and matching conditions at  y = Y .  

In the region outside the shear zone, y > 1, the asymptotic expression for the 
Fourier transform w(y, k, n) is given from (A. 31), (A. 40), (A. 54) and (A. 57) as 

W(Y, k, n) ( .- - 'I! (( $)* + i) h(0) exp ( - ipj; q( y) dy) , (5 .6 )  
4p*Q$ 

for large A and ,u where h(0) = - - 
(5.7) 

from (A. 16) and (A. 34). On the other side of the shear zone, y < - 1, the corre- 
sponding expression is 

Several properties of these solutions are of interest at this stage. The y-depend- 
ence, which appears in the term 

exp (-iP/;q(Y)dY) 

in (5.6), and the corresponding term in (5.8) indicates that the solution is of the 
form of pressure waves, as we would expect, and since q(y) is constant outside 
the shear layer, the wavelength in the y-direction is 2m(,uQ+)-l for y > 1 and 
%(AQ-)-l for y < - 1. Secondly, the radiated pressure fluctuations for a given 
wave-number and frequency are dependent only on the properties of the tur- 
bulence at  the critical layer Y appropriate to this k and n. This provides an 
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analytical confirmation of the intuitive remarks of the previous section. Thirdly, 
if h and ,u are comparable, that is, if M2 k2/&2,, k21Q2_ the ratioof the amplitudes 
of the pressure waves above and below the shear layer is approximately 
(&-I&+)&. If for a particular pair (k, n),  the critical layer is towards the upper 
side of the shear zone, then it can be shown simply that Q, < Q-, and the ampli- 
tude of the pressure wave above the shear zone is greater than the amplitude 
below for the same (k, n). 

These expressions simplify considerably if MZ >> k2/&2,, k2/Q?, that is if the 
wave-number of the disturbance lies well within the fan of figure 3. When M is 
very large, this requirement is satisfied by almost all wave-numbers of the 
pressure field except those for which k1 is very small. Then 

h - . - p - M ,  (5.9) 

the errors being of order (Mcos28[1- V (  Y)]2)-1, and (5 .6 )  and (5.8) become 

w(y, k, n) - - ( - j)! ( 1  +i)  exp (3ni/8) 
4Q9 A2(  Y )  Q2f 

for y > 1, and 
Mfr(  Y )  

w(y,k,n) N (-$)!(l+i)exp(-3ni/8) 

. (5.10) 

for y < - 1, where Y is defined by 

n + k , P ( Y )  = 0. 

It is convenient now to use the approximation (3.4) for the generation term in 
the equations and to replace the term G in (3.9) by 

The Fourier transform r(y,  k, n) is thus 

r(Y, k, n) = - Biy4y) %?4 k,Z(y, k, n), (5.11) 

where Z(y, k,n) is the generalized Fourier transform of v,, the dimensionless 
velocity fluctuation in the direction normal to the shear zone. From these 
relations we can synthesize expressions for the spectrum and mean square 
amplitude of the pressure fluctuation function 5 = Afy) log (PIPo) in terms of 
the properties of the shear zone. From the theory of generalized functions 
(Lighthill, 1958) it  can be shown that 

W(Y, k, n) w*(Y, k - k’, TZ - 12’) = n(y ,  k, n) S(k;) S(kL) ~ ( T L ’ ) ,  

where the bar denotes an ensemble average, the asterisk the complex conjugate, 
S(k;), etc., the Dirac delta functions and 

____ .~ ____ __ - . ~ ~ . .  

n (Y, k, a) = (27T)F3 5(Y, y1, yz, 7) a!!, Y1+ Y l ,  Y2 + Y 2 , 7  + 7’) 
x exp ( - i ( k .  r + n 7 ‘ ) ) d r d ~ ’  
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the wave-number-frequency spectrum of the pressure function. Thus 

n (y ,  k,  n) = //w(y, k, n) w*(y, k - k’, n -n’ )  dk’dn’, (5.12) 

the integral being over a small range containing k; = kh = n’ = 0. Similarly, 

Y( Y ,  k,  n) = [[Z( Y ,  k ,  n ) m Y ,  k - k‘, n - n’)dk‘dn‘ 
J J  

= (2rr)-3~~v,(Y,Y,,Y2,7)2.,(Y,Yl+r,,Y2+r2,7ST’) 

x exp { - i ( k .  r + w’)} d r d ~ ’ ,  (5.1 3) 

for the spectrum of the v,-velocity fluctuations. 
For definiteness, we will consider the region y > 1 above the shear zone, and 

constructing II(y, k ,  n) from these last two expressions, (5.10) and (5.7), it is 

2M%Q&( Y )  k2,Y!( Y ,  k,  n)  
found that 

A 2 ( Y )  lk,+nl * 

1T(k,n) - +[(-$)!l2X- (5.14) 

The dependence on y of the right-hand side has disappeared, reflecting the fact 
that, in the present theory, the statistical properties of the pressure fluctuations 
in the free stream are independent of the distance from the shear zone of the 
plane in which they are observed. This theory has neglected the self-convection 
of the sound waves which leads to  the development of shock waves as y increases 
if is sufficiently large, and as we have stated, can be expected to be accurate 
only near the shear zone before this process has distorted the pressure waves 
appreciably. 

The instantaneous wave-number spectrum is obtained by integrating (5.14) 
over all frequencies n: 

II(k) = rI(k,n)dn 

= ( ~ - 2 S t ( y ,  yl, y2,7)~(y,yl+r1,  y2+r2,7)e-ik.rdr. (5.15) 

Since n+k,V(Y)  = 0, 
dn = -Ic1!2(Y)dY, (5.16) 

and integration over all frequencies n with fixed k corresponds to integration 
over the position Y of the critical layer across the shear zone. Thus 

(5.17) 

where n = - Ic, V (  Y ) .  
It should be pointed out that this expression is likely to provide a slight 

numerical overestimate of the pressure spectrum, since the integral includes 
layers near the outside edges of the shear zone, where the approximation (5.10) 
is not appropriate and, indeed, where the eddy wave mechanism may not be 
operative, since the difference between the free-stream velocity and the eddy 
convection velocity is subsonic. However, if M is large, these regions constitute 
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only a small part of the total shear zone, and the error in integrating (5.14) over 
the whole zone instead of over the supersonic region only should be relatively 
small. The relative contributions to II(k) from critical layers symmetrically 
spaced above and below the centre-line y = 0 is demonstrated clearly in 
this expression, since V (  Y )  is positive in the former case and negative in the 
latter (IVl < 1). We might anticipate that a possible divergence of the 
integral at  the upper limit, where 1 - V (  Y )  -+ 0, is avoided by the fact that 

The integral in (5.17) can be simplified further by making use of a plausible 
approximation on the nature of the turbulence in the shear zone. It will be 
supposed that the spectrum of the v,-velocity covariance with time delay is 
independent of Y provided the observations are made in a frame of reference 
moving with the local mean velocity. It is shown below that this statement 
really involves two approximations, the first being that the mean square value 
of these velocity fluctuations is independent of the position in the shear layer 
1 yI < 1 at which they are measured. Our experience with subsonic free turbulent 
flows suggests that this is 8 good approximation for the fully turbulent regions; 
Townsend (1956) quotes a considerable body of experimental support. It is 
difficult to  see why this general property should not also be true in the supersonic 
shear zone. The second requirement is that the integral time scale of the velocity 
fluctuations, measured in a frame of reference moving with the local convective mean 
velocity, is also independent of Y .  This also is strongly suggested by the observed 
near-homogeneity of such flows for M < 1. 

It can be shown simply (Phillips 1957, Q 4.1) that if Y (  Y ,  k , ~ )  represents the 
two-dimensional wave-number spectrum with time delay 7 measured in a frame 
of reference at rest, then the corresponding quantity observed in a frame of 
reference moving with velocity V is 

e i @ . m 7 Y (  Y ,  k ,7) ,  (5.18) 

and this quantity we suppose to be independent of Y .  Our wave-number- 
frequency spectra of this problem are all measured in a frame at rest, and are 
given by 

a( Y )  -+ 0 also. 

Y ( Y , k , n )  = (27r)-l Y(Y,k,7)edin7d7 

m 
Y ( Y ,  k,7)exp{ilc1 V ( Y ) 7 ) d 7 ,  (5.19) 

since n = - k, V (  Y ) .  In  our problem, V = ( V ,  0, 0) ,  so that, under our assumption, 
the integrand is independent of Y and equal to, in particular, its value at Y = 0. 

Thus m 
Y ( Y , k , n )  = (Zn)-l 

= ?T-~YP(O,  k) 0(k), say, (5.20) 

where Y (0, k )  represents the usual two-dimensional wave-number spectrum 
with zero time delay at Y = 0 and 0(k) the integral time scale of the spectrum 
of the w,-fluctuations measured at the centre-line where V (  Y )  = 0. If, in addition 
the mean density is approximately constant across the shear zone, the variation 
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in A( Y )  can be neglected. We might note in passing the inference that if the 
shear zone is hot, so that A( Y )  is significantly less than unity, then the pressure 
radiation outside the shear zone will be increased by a factor proportional to 
the inverse square of the sonic speed ratio. 

With these simplifications, (5.17) becomes 

The integrand in this last expression gives the relative contributions to II(k) 
(or to t;", from the various layers Y within the shear zone. Clearly the greater 
contributions to the disturbance above the layer originate from the region Y > 0 
where V (  Y )  is positive. The magnitude of the integral depends only on the mean 
velocity profile in the shear zone, and is fairly insensitive to the details of its 
shape. V (  Y )  increases from approximately - 1 to 1 as Y increases from - 1 to 1 .  
If we approximate V (  Y )  by 

IV(Y)I = 1--exp(-21Yl), 

the integral has the value 3-08 approximately of which the region 0 < Y < co 
contributes about 90 %. If we take V (  Y )  as the error function erfc (2  Y ) ,  then 
the integral is approximately 5.13, of which 82 yo is contributed by the upper 
half of the shear zone. It seems likely then, that the value of the integral will, 
under ordinary circumstances, be about 4, the probable error lying well within 
a factor of two. Thus 

(5.22) 
2 

II(k) N - [( -$)!]2y2M*k;Y(k)S(k), 
7T 

where Y(k) = Y(0, k). 
Equation (5.22) expresses the basic result of this part of the paper. It em- 

phasizes the dependence of the pressure spectrum on the spectrum of (&#y,), 
which is in accord with our conception of the mechanism of generation in terms 
of Mach waves arising from the Fourier components of the fluctuations in velocity 
normal to the shear zone. The time scale 8(k) enters the problem because of the 
statistical nature of the process; the greater the time scale O(k) (or the longer 
the eddy lifetime) the greater is the coherence in the contributions to the pressure 
field and the sum of all contributions is increased. 

If the fluctuations in pressure outside the shear zone are not a large fraction 
of the mean pressure at infinity, po, then the spectrum (5.22) can be interpreted 
directly as the spectrum of the pressure fluctuation level. For 

- P-Po - 
PO 

outside the shear layer, where A(y) = 1, if ( p - p o )  &po .  This requirement is 
equivalent to restricting our considerations to situations in which only weak shocks 
are generated by the turbulence, and this is consistent with our earlier approxi- 
mations. At extremely high Mach numbers, p - p ,  may be comparable in root 
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mean square to po,  but the whole theory may become unreliable, since dissocia- 
tion and other phenomena may become important. 

To form an estimate of ( p  -po)2 outside the shear zone, some information is 
needed concerning B(k). If the lifetime of the eddies is determined by the straining 
process, as is quite conceivable in supersonic shear flow where the turbulence 
level is considerably smaller than in a corresponding subsonic flow, the character- 
istic (dimensional) time is of order (IaU/ax31max)-l (Townsend 1956, p. 96), so 
that the dimensionless B(k) is of order unity. On the other hand, if the process 
determining the life-time is the turbulent rate of strain due t o  the energy con- 
taining eddies, or some more complicated process involving compressibility 
effects, the time scale may be different, and in view of our lack of information 
in supersonic turbulence, it is difficult at this stage to evaluate the possible 
alternatives. It seems that to take B(k) = 1 is probably the best course open; 
it is certainly the simplest. 

Equation (5.22) can then be integrated over all wave-numbers k (including 
those outside the fan of figure 2: the spurious contribution from these will be 
small because of the k2, factor in (5.22)) and we obtain 

in the notation of (3.5). Restoring the dimensional quantities of Q 3, 

(5.23) 

(5.24) 

(5.25) 

where 1 is the differential length scale in the streaming direction of the velocity 
fluctuations normal to the shear zone.? 

It is interesting to contrast the behaviour predicted by (5.25) for large M with 
the U8 law found by Lighthill when M 4 1. If G/ U2 is only weakly dependent 
on U when the Mach number is large,$ the mean-square-pressure fluctuations 
increase only as the + power of the velocity for M 9 1. A decrease in the steepness 
of the curve (p -po)2 /p i v s  U is very evident from the little experimental data 
that is available, of which perhaps the best is provided by the recent measure- 
ments of Laufer (1959). These were made inside a supersonic wind-tunnel and 
the major source of the sound field appeared to  be the turbulent boundary layers 
along the walls. Laufer found that the over-all variation of ( p - ~ ~ ) ~  was as M4, 
approximately, but that the boundar-layer thickness also increased with Mach 
number, a little faster than linearly. The radiation from a supersonic turbulent 

The result (5.24) is applicable also (possibly with a modified B(k)) to  the pressure 
fluctuations generated by the instability of a supersonic laminar shear zone. 

$ It seems likely that &Us will vary only slowly with M ,  if at all, in view of the remarks 
in 8 6 concerning radiation damping. 
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boundary layer could be considered by the methods of this paper, replacing the 
radiation condition at  y = -a by the appropriate wall boundary condition. 
It is very likely that the result would be similar to (5.25) except for a difference 
in the numerical constant since the basic mechanism of the sound generation is 
the same. This suggests that, for the boundary layer also 

10 

8 -  

6 -  

4 -  

2 -  

where 6 is the boundary-layer thickness, and if 1 and %lUa are approximately 
independent of Mach number (see footnote on previous page), then 

0 

0 

8 

b 
8 

0 

I I , I 

(5.26) 

Laufer’s data are plotted in figure 3 and, although there is some scatter, there 
is no evident trend with Mach number of the quantity on the left-hand side of 
(5.26). It therefore appears that Laufer’s M 4  variation represents the combined 

effects of the M* factor given by the present theory and a variation of the 
boundary-layer thickness 6, as M j  approximately. The present theory also in- 
dicates that the pressure field external to the shear flow is being swept past a 
point fixed in the external fluid with speed of order U. In  the boundary layer, 
this convection speed would be lower, of order +U corresponding to the speed of 
the flow outside the viscous and buffer layers. This also is in rough agreement 
with Laufer’s results. It appears that these measurements give promising, but 
tentative support to the theory, though more measurements are required, both 
on the sound field and on the boundary-layer structure before firm conclusions 
can be drawn. 

2 Fluid Mech. 9 
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6. The directional distribution 
The directional distribution of the radiation above the shear zone is found 

most readily from (5.21). Relative to the fluid in y > 1, the critical layer at  Y is 
being convected with speed U[l - V (  Y)], and from simple geometrical con- 
siderations, if U[l - V (  y ) ]  > ao, the direction of propagation relative to the 
outside stream of waves originating at the layer Y is given by 

The relative contributions to (p-po)2 from the layers between Y, Y + d  Y are 
given by (5.21) as ngdY 

1 -  V(Y)'  
(6.2) 

and each layer Y is associated with an angle of propagation a specified by (6.1). 
By differentiation of (6.1) 

sin a 
M cos2 a Q(Y)dY = -___ da, (6.3) 

so that the directional distribution function is given by (6.1), (6.2) and (6.3) as 

f (a)  = Q&( Y )  tana,  (6.4) 

where Y = Y(a)  is given by (6.1). The approximate shape of the directional 
distribution can be found by assuming a shape of the velocity profile, a con- 
venient form being given by 

1 V (  Y)I = 1 - e-21pI, 
and the directional distribution fimctionf(a) is illustrated in figure 4 for this 
profile for Mach numbers of 2, 4 and 6 corresponding to Mach numbers based 
on the velocity diflerence of 4, 8 and 12. As the Mach number increases, the 
maximum of the directional distribution moves towards 90" and becomes 
sharper, since most of the Mach lines from the shear zone are inclined at quite 
a small angle to the direction of the free stream. 

The cut-off in figure 4, which occurs when cosa = (ZN)-l will be modified in 
practice by the presence of scattering phenomena introduced by the turbulence, 
and by pressure wave interactions, both of which have been neglected in the 
present theory, and which would result in the radiation of some sound in the 
backwards direction, at  angles greater than 90". 

Figure 4 indicates that the direction of radiation observed at rest relative to 
the mean stream above the shear layer is for large M concentrated in directions 
near but less than 90". This property makes possible a simple estimate of the 
acoustic energy flux N per unit area from the shear zone, using expressions derived 
by Ribner (1958). If %,, is the direction in which most of the energy travels 
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from (5.15), and the acoustic efficiency 17 is 

acoustic energy flux 17 = -- 
Po u3 

19 

This decreasing acoustic efficiency with increasing M for large Mach number 
contrasts with an increase as M6 when M is small shown by Lighthill (1952). 
This implies that at some Mach number of order one or two the acoustic efficiency 

0 

U 

90" 

FIGURE 4. The directional distribution function for M = 2 , 4  and 6, corresponding to Mach 
numbers for the velocity difference across the shear zone of 4, 8 and 12, respectively. 

is a maximum, decreasing rapidly as M -+ 0 and more slowly as M + CQ. It also 
implies that the loss of energy from the turbulence by acoustic radiation is always 
small compared with the energy supply from the mean flow, and the effects of 
radiation damping are likely to be small. 

These inferences are supported by the little data that is available. Lilley (1958), 
in discussing the measurements of Lassiter & Heitkotter (1954), suggests that 
a qualitative behaviour of this kind is indicated since the measured acoustic 
efficiency of a round jet at M = 5 is approximately the same as found at  M = 1.8 

2- 2 
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by Sanders & Callaghan (1956) below which it drops off rapidly. Lassiter & 
Heitkotter also measured the directional distribution of the radiation from a 
round jet whose exit Mach number was 3.16. Since most of their sound originated 
in the shear layer near the exit, one might hope to compare their measurements 
with the results of this paper. Their directional maximum occurred at about 50", 
compared with the 57" predicted by this theory for the corresponding Mach 
number. These angles are significantly larger than those found for the maximum 
intensity in subsonic jets (about 30"). As a increased beyond 60", the observed 
intensity dropped rapidly to a level about 60db below the maximum, in good 
qualitative accord with the shapes of the curves shown in figure 4. 

Although these preliminary indications are again quite promising, a great 
deal more data will have to be obtained before more detailed comparisons are 
possible. There still remains the question of the interaction of the random pattern 
of weak shock waves outside the shear layer, but that is another story. 

I am greatly indebted to Dr L. S. G. Kovasznay, Dr M. Morkovin and Dr S. 
Corrsin for the stimulation of discussing this work with them. It was supported 
by the Office of Naval Research under Contract Nonr 248 (38). 

Appendix. Asymptotic solution for large M 
Equation (3.8) can be expressed as 

the positive or negative sign being taken according as k, is positive or negative. 
If Ik,l > In[, q ( y )  has a single zero at y = Y ,  say, and q(y)  > 0 for y > Y and 
q ( y )  < 0 for y < Y .  Let 

5 = X ( Y ) ,  TJ = 4 Y )  @ ( Y h  (A. 3) 

and on substitution into (A. l ) ,  we find 

Now choose 1L so that 

Thus 
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The positive values of the fractional indices are to be taken and the lower 
limit of the integral is chosen as Y so that is real for all y .  Clearly 0 < E < 00 and 
the transformation y = y(5) is double valued with branch I corresponding to 
Y < y < co and branch I1 to -co < y < Y .  From (A. 5 )  and (A. 7) 

7 = W ( Y ) $ ( Y )  = q v q q d Y l - f w ( Y ) ’  (A. 8) 

where the limits of integration are understood to be as specified above. With 
the transformation (A. 7) and (A. 8), (A. 4) becomes 

and (q(y) l  is very nearly constant outside the shear zone, i.e. for (y (  > 1 .  It 
follows by differentiation of (A. 10) that 

(A. 11)  

(A. 12) 

as 6 --f co, where 

(A. 13) 

Q = Q+ = lim q(y )  

Q = Q- = lim q(y)  for branch 11. 

for branch I ,  
v-+m 

f/+- W 

From (A. 2), clearly 
Q+ = n + h, 

since A(co) = V(m) = 1, V (  -co) = - 1. The behaviour (A. 11) suggests that we 
incorporate the term k2F/Q2 into the left-hand side of (A. 9), giving 

where, for branch I, 

(A. 14) 

(A. 15) 

From (A. lo), (x’)-l is bounded near 6 = 0,  and from (A. 11) g(5) is 0($-2) as 
5 -+ 00, so that g(5) is integrable over (0,co). Furthermore, r (y )  = 0 outside the 
shear zone, so that h(€J also is integrable over (0,co). The governing equation for 
branch I1 ( - co < y < Y )  is the same as (A. 14) except that Q+ is replaced by Q-. 
We seek an asymptotic solution to (A. 14) which is to be matched to the corre- 
sponding solution for branch I1 a t  6 = 0. 
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The following theorem will be used. If K(E, t )  is the solution to 

(A. 17) 

satisfying the conditions 

(A. 18) 
d 

K(E,t) = 0, z K ( &  t )  = 1 when < = t 

and H ( [ )  is m y  solution to (A. 17), then the Volterra integral equation 

(A. 19) 

satisfies (A. 14). The proof is given by Erddlyi (1956, p. 99). Note that y(E) and 
H(g)  have the same value and the same derivative a t  < = 0. 

The fundamental solutions to (A. 17) are 

(PE2)t J&(8PE”, (Pt?)t J-&(4Pt2)9 
and the kernel K satisfying the conditions (A. 18) is 

7 l  
K(5, t )  = - {(PE2)* J&4PE2) (Pt2) f  J-&4 

2 J2P* 
- (P%)*J-&tPE2) (Pt2P Jd.(tPt2)). (A. 20) 

To find the asymptotic solution to (A. 19) let 

If 

(A. 21) 

(A. 2 2 )  
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The next approximation, ~ o + ~ l ,  is obtained by substituting ro into the integral 
of (A. 19) (ErdBlyi 1956). Equation (A. 23) is of the form 

so that 
To(<) = H ( t )  + p-lG(t,  PI, 

and integration by parts again shows that 

where A is a finite constant. Thus 

(A. 24) 

If only the leading term in the asymptotic expansion is required, it is clear that 
the second term in the square bracket is negligible except near the zeros of H(C). 
However, if we can take H ( t )  as 

H ( 0  = A(4uC2)+ J&(+Pt2) + B(4PE2)’ J&Pt”, (A. 26) 

where the ratio of the constants A / B  is complex, then H ( ( )  has no zeros and 
(A. 23) is a uniformly valid asymptotic solution as p+ co. It will be shown below 
that such constants can be found for which the radiation and matching conditions 
in the present problem are satisfied. 

Outside the shear zone, h(t)  = 0, and 

7r r ( t )  = (+PE2)& J&(*PE2) [. +- h( + 0) @l(0)] 
2 4 2 P  

+ (4Pt2)*J-&Pt2) p3-+ + 0) Q2(0)] 

= 44Pt2)& J&IPt2) + P(4PE2)+ J-f(+PtZ;2), say, (A. 26) 

where i 
7r 

01 = A+---h( + O )  @1(0), 

p = B - -__ h( + 0) Q2(0). 

243p 

242P 

7r 
(A. 27) 

From (A. S), 

so that outside the shear zone, as ,u + co, 
Q(Y) = q-4{2 j- q&i>+ 7 = z+P-47-4(+Pt2)& r ,  (A. 28) 

~ ( y )  N 2%74,~49~4 [ lp l  cos (4pt2 - 3 ~ )  +/I cos ( 4 ~ 6 ~  -in)], (A. 29) 

where we have used the asymptotic relations 

(A. 30) 
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as x -+ co. Equation (A. 29) can be written alternatively as 

W(Y) (8n2PQ2+)- - fwa+(1  +i)Blexpi(P@y -374 
+@a+ (1 -i)B]exp -i(PJqdy-gn)}. (A. 31) 

The solution and its asymptotic form for branch I1 corresponding to 
-co < y < Y can be expressed similarly. 

since 

(A. 32) 

where M 2 - -  

(A. 33) 

= - ih( + O ) ,  

X I  = q(y)/t; from (A. 10) 

- _____ - near y = Y ,  

-tat as y + Y + o ,  

+-a4 as y + Y - o ,  

'(Y- 

IY - YI 

(A. 34) 

and C and D are further constants. Outside the shear zone, as h -+ 00, 

a ( y )  N (Sn2hQ%)--f([42y+(1 +i)S]expi(h/qdy-%n) 

+ [42  Y + (1 - i) 61 exp - i( h Jq dy - in)>, (A. 35) 

where 

in 8 = D + -  
2 4 2 h  

(A. 36) 

Determination of the constants 
We seek to determine the constants A ,  B, C, D by applying radiation conditions 
outside the shear zone and matching conditions between the two branches at  
t; = 0. If W represents the component of the velocity of the convected wave 
outside the shear zone, observed in the direction of y increasing, then 

a< ,+W- a< = 0, 
a Y  

W Y )  
a Y  

or in terms of our Fourier transforms 

inw(y)  + W __ = 0. 

Thus 
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The two parts of the solution (A. 31) are of the form exp ( & ipJqdy); let us 
consider the particular wave motion represented by 

W(Y) exP( - iPpY) .  (A. 37) 

For such waves 

(A. 38) 

for y > 1, from (A. 13). But from (4.3), n = - h l x  approximately, where V ,  is 
the convection velocity at the critical layer Y ,  so that from (A. 42) 

w = (p( 1 - V;1)}-1. (A. 39) 

Since IV,l < 1, W is positive or negative according as V,  < 0 or V ,  > 0. 

I - /-/ V,CO 

FIGURE 5. The convection of eddy Mach waves. 

Figure 5 shows the nature of the solution desired for the Mach waves associated 
with the layers of the shear zone. If V ,  < 0, the Mach waves move to the left 
and when observed in the y-direction in y > 1, they appear to move outwards, 
so that we require W > 0. If V ,  > 0 the waves are convected to the right and they 
appear to move inwards in y > 1, so that W < 0. Equation (A. 39) shows that 
these properties are associated with waves of the type (A. 37); the other possi- 
bility represents waves moving in the opposite directions (incident on the shear 
layer). Our solution must therefore be of the form (A. 37) in y > 1, so that from 

42a+(l+i)p = 0. (A. 40) 
(A. 31) 

In the region y < - 1, for waves of the type 

W(Y) cx: exp (iACgdY), (A. 41) 
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equation (A. 38) is replaced by 
nA( - co) W=-- 
h(n - Ic,) ' 

using (A. 13) for y < - 1. Thus 

(A. 42) 

(A. 43) 

where A( -00) is the dimensionless speed of sound far below the layer and is 
positive. When V ,  > 0, reference to figure 5 shows that in y < - 1 the Mach 
waves that we seek move outward so that W < 0, and when V ,  < 0, W > 0; both 
statements being in accord with (A. 43). Thus, when y c - 1, the waves generated 
by the shear zone are of the type (A. 41) and so from (A. 34), 

J Z y + ( l - i ) b =  0. (A. 44) 

We now perform the matching of the solutions at = 0. It will be recalled that 
~ ( c )  and H ( c )  have the same value and the same derivative at E = 0, so that 
from (A. S), 

4 Y )  = {2J@Y}'H(c) ___ (A. 45) 

near y = Y .  Thus 
@ 

-+ - iWH(0) as y + Y - 0. 
(A. 46) 

4 Y )  3 Q-WO) 

Now 

near 5 = 0 for branch I ,  and 

for branch 11. From (A. 46), then 
B = -iD. 

Furthermore, d a  - = Hdy{[2Jqdy]%q-*}+ d [2/qdy]-4q+- dH 
dY a ' 

from (A. lo), so that 

+- - "P*A as y +  ~ + o ,  
dY 2*((a)! 

iQW 
2*(* ! 

C as y + Y - 0 ,  +- 

(A. 47) 

(A. 48) 

(A. 49) 

(A. 50) 

(A. 51) 

so that ,u*A = in@. (A. 52) 

Using (A. 27) and (A. 35) to replace a, . . ., 6 in (A. 40) and (A. 44), the equations 
to be solved are 

(A. 53) 

nh( + 0) 
4 2  A + (1 + i) B = -7- {( 1 + i) Q2(0) - 4 2  Q1(O)}, 

@ C + ( l - i ) D  = - 9- -- {(1-i)Q2(0)-4J2a.),,(0)), 

2 J - P  
in-h( + 0) 
- 4 2  A 
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together with (A. 49) and (A. 52). But from (A. 22) ,  

27 

so that 

If, therefore, for brevity, we write 

L = can, @l(O)  h( + 0) 

= 2 f d (  - f)! h( + 0) ,  
the equations (A. 53) become 

J 2 A + ( l + i ) B  = - ( l - i ) ~ - l L ,  

J Z C + ( l - i ) D  = - ( l - i )h- lL .  

The solution to (A. 49), (A. 52) and (A. 55)  is 

I 

(A. 54) 

(A. 55)  

(A. 56) 

and the combination of constants appearing in the asymptotic expression (A. 31) 

= - { ( x ) 2 + i ) .  2L P 
lu 

(A. 57) 

If M 2  9 (k2/&2+), (k2/&2_) (for wave-numbers well inside the fan of figure a ) ,  
these expressions take the simpler forms 

’i A = 0, 

iL B = - -  
M’ 

c = 0, 
L D = - -  
M’ 

J 2 a + ( l - i ) P  = - ( l+i) ,  M 2L I 
correct to O(M-l). 

(A. 5 8 )  
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